

Universidade Federal Fluminense – UFF Polo Universitário de Rio das Ostras – PURO Instituto de Ciência e Tecnologia – RIC Departamento de Física e Matemática – RFM

$1^{\underline{a}}$ prova de Cálculo 2-2/2012 07/01/2013

Questão:	1	2	3	Total
Pontos:	6	2	2	10
Notas:				

Nome:	Matr.:

Observações: A interpretação das questões faz parte dos critérios de avaliação desta prova. Responda cada questão de maneira clara e organizada. Resultados apresentados sem justificativas do raciocínio não serão considerados. Qualquer aluno pego consultando alguma fonte ou colega terá, imediatamente, atribuído grau zero na prova. O mesmo ocorrerá com o aluno que facilitar a consulta do colega. Casos mais graves, envolvendo algum tipo de fraude, deverão ser punidos de forma bem mais rigorosa.

1. Calcule as seguintes integrais

(a) [2 pontos]
$$\int_{\frac{1}{\pi}}^{\frac{2}{\pi}} \frac{1}{x^2} \cos\left(\frac{1}{x}\right) dx$$

(c) [1 ponto]
$$\int \frac{dx}{\sqrt{4-x^2}}$$

(b) [1 ponto]
$$\int tg^3 x dx$$

(d) [2 pontos]
$$\int \frac{\sin x}{1 - \cos x} \, dx$$

Solução:

(a)

$$\int_{\frac{1}{\pi}}^{\frac{2}{\pi}} \frac{1}{x^2} \cos\left(\frac{1}{x}\right) dx = -\int_{\pi}^{\pi/2} \cos u \, du \qquad u = \frac{1}{x} \, du = -\frac{1}{x^2} \, dx$$
$$= -\sin u \mid_{u=\pi}^{\frac{\pi}{2}}$$
$$= -1$$

(b)
$$\int \operatorname{tg}^{3} x \, dx = \int (\sec^{2} x - 1) \operatorname{tg} x \, dx$$

$$= \int \sec^{2} x \operatorname{tg} x \, dx - \int \operatorname{tg} x \, dx \qquad u = \operatorname{tg} x \, du = \sec^{2} x \, dx$$

$$= \int u \, du + \ln |\cos x|$$

$$= \frac{u^{2}}{2} + \ln |\cos x| + C$$

$$= \frac{\operatorname{tg}^{2} x}{2} + \ln |\cos x| + C$$

(c)

Universidade Federal Fluminense – UFF Polo Universitário de Rio das Ostras – PURO Instituto de Ciência e Tecnologia – RIC DEPARTAMENTO DE FÍSICA E MATEMÁTICA – RFM

$$\int \frac{dx}{\sqrt{4 - x^2}} = \frac{1}{2} \int \frac{1}{\sqrt{1 - \left(\frac{x}{2}\right)^2}} dx$$

$$= \frac{1}{2} \int \frac{2\cos\theta}{\sqrt{1 - \sin^2\theta}} d\theta$$

$$= \int d\theta$$

$$= \theta + C$$

$$= \arcsin\frac{x}{2} + C$$

$$x = 2\sin\theta, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$

$$dx = 2\cos\theta d\theta$$

$$x = 2 \sin \theta, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$
$$dx = 2 \cos \theta \ d\theta$$

$$\int \frac{\sin x}{1 - \cos x} dx = \int \frac{2}{z(1 + z^2)} dx$$

$$= \int \frac{2}{z} - \frac{2z}{1 + z^2} dz$$

$$= 2 \ln |z| - \ln(1 + z^2) + C$$

$$= \ln \left(\frac{z^2}{1 + z^2}\right) + C$$

$$= \ln \left(\frac{\sin^2 x}{2(1 + \cos x)}\right) + C$$

$$= \ln \frac{1}{2} + \ln \left(\frac{\sin^2 x}{1 + \cos x}\right) + C$$

$$= \ln \left(\frac{\sin^2 x}{1 + \cos x}\right) + C$$

$$= \ln \left(\frac{\sin^2 x}{1 + \cos x}\right) + C$$

$$= \ln \left(\frac{\sin^2 x}{1 + \cos x}\right) + C$$

$$= \ln \left(\frac{\sin^2 x}{1 - \cos x}\right) + C$$

$$= \ln \left(\frac{\sin^2 x}{1 - \cos x}\right) + C$$

$$= \ln \left(\frac{\sin^2 x}{1 - \cos x}\right) + C$$

$$= \ln \left(\frac{\sin^2 x}{1 - \cos x}\right) + C$$

$$= \ln \left(\frac{\sin^2 x}{1 - \cos x}\right) + C$$

$$= \ln \left(\frac{\sin^2 x}{1 - \cos^2 x}\right) + C$$

$$= \ln \left(\frac{\sin^2 x}{1 - \cos^2 x}\right) + C$$

$$= \ln \left(\frac{\sin^2 x}{1 - \cos^2 x}\right) + C$$

$$= \ln \left(\frac{\sin^2 x}{1 - \cos^2 x}\right) + C$$

$$z = \operatorname{tg} \frac{x}{2} dx = \frac{2dz}{1+z^2} \cos x = \frac{1-z^2}{1+z^2}$$

frações parciais

$$z = \frac{\sin x}{1 + \cos x} \quad \sin x = \frac{2z}{1 + z^2}$$

2. Suponha que f é contínua em todo $x \in \mathbb{R}$ e que f(0) = -1. Se

$$g(x) = \int_1^{x^2} f(t) \ dt,$$

mostre que

- (a) [1 ponto] O gráfico de g tem uma tangente horizontal em x=0.
- (b) [1 ponto] O gráfico de g tem um máximo local em x = 0.

Solução:

Universidade Federal Fluminense – UFF Polo Universitário de Rio das Ostras – PURO Instituto de Ciência e Tecnologia – RIC Departamento de Física e Matemática – RFM

(a) Pela regra de Leibniz temos que

$$g'(x) = 2xf(x^2) \Rightarrow g'(0) = 2 \cdot 0f(0) = 0.$$

Com isso temos que 0 é ponto crítico de g e portanto o gráfico de g tem uma tangente horizontal em x=0.

(b) Derivando novamente a função g temos que

$$g''(x) = 2f(x^2) + 4x^2f'(x^2) \Rightarrow g''(0) = 2f(0) = -2 < 0,$$

logo 0 é ponto de máximo local.

3. Considere a seguinte fórmula de recorrência:

$$\int x^n e^x \ dx = x^n e^x - n \int x^{n-1} e^x \ dx,$$

- (a) [1 ponto] Use esta fórmula para calcular $\int x^3 e^x dx$.
- (b) [1 ponto] Use integração por partes e demostre esta fórmula.

Solução:

(a)

$$\int x^3 e^x \, dx = x^3 e^x - 3 \int x^2 e^x \, dx$$

$$= x^3 e^x - 3x^2 e^x + 6 \int x e^x \, dx$$

$$= x^3 e^x - 3x^2 e^x + 6x e^x - 6 \int e^x \, dx$$

$$= x^3 e^x - 3x^2 e^x + 6x e^x - 6e^x + C$$

(b) Fazendo $u=x^n$ e $dv=e^x dx$ temos que $du=nx^{n-1}\ dx$ e $v=e^x$. Usando a integração por partes temos que

$$\int x^n e^x \ dx = x^n e^x - n \int x^{n-1} e^x \ dx.$$

[—] Era uma vez — começou o Diretor — quando Nosso Ford ainda estava neste mundo, um rapazinho chamado Reuben Rabinovitch. Reuben era filho de pais de língua polonesa. — O Diretor interrompeu-se: — Suponho que sabem o que é o polonês, não?

[—] Uma língua morta.

[—] Como o francês e o alemão — acrescentou outro, exibindo com zelo seus conhecimentos.

[—] E "pais"? - perguntou o D.I.C.

Fez-se um silêncio embaraçado. Vários rapazes coraram. Ainda não tinham aprendido a fazer a distinção, importante mas por vezes muito sutil, entre a indecência e a ciência pura. Um deles, por fim, teve a coragem de levantar a mão.

[—] Os seres humanos, antigamente, eram. . . — Hesitou; o

sangue subiu-lhe às faces. — Enfim, eram vivíparos.

[—] Muito bem. — O Diretor aprovou com um sinal de cabeça.

[—] E quando os bebês eram decantados. . .

[—] Nasciam — corrigiu ele.

[—] Bom, então, eram os pais. . . isto é, não os bebês, está claro; os outros. — O pobre rapaz estava atrapalhadíssimo.

[—] Em uma palavra — resumiu o Diretor — os pais eram o pai e a mãe. — Essa indecência, que, na realidade, era ciência, caiu com estrépito no silêncio daqueles jovens, que não ousavam olhar-se. — A mãe — repetiu ele em voz alta, para fazer penerrar bem fundo a ciência; e, inclinando-se para trás da cadeira, disse gravemente: — São fatos desagradáveis, eu sei. Mas é que a maioria dos fatos históricos são mesmo desagradáveis.

Universidade Federal Fluminense – UFF Polo Universitário de Rio das Ostras – PURO Instituto de Ciência e Tecnologia – RIC Departamento de Física e Matemática – RFM

Regras de Derivação

$$\begin{split} \frac{d}{dx}c &= 0 & \frac{d}{dx}(cf(x)) = cf'(x) \\ \frac{d}{dx}(f(x) + g(x)) &= f'(x) + g'(x) & \frac{d}{dx}f(g(x)) = f'(g(x))g'(x) \text{ (regra da cadeia)} \\ \frac{d}{dx}(f(x)g(x)) &= f'(x)g(x) + f(x)g'(x) \text{ (regra do produto)} & \frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} \text{ (regra do quociente)} \end{split}$$

Tabela de Derivadas

$\frac{d}{dx}x = 1$	d 1	$\frac{d}{dx} \operatorname{sech} x = -\operatorname{tgh} x \operatorname{sech} x$
$\frac{d}{d}x^n - nx^{n-1}$	$\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1 - x^2}}$ $d \qquad -1$	$\frac{d}{dx} \operatorname{cotgh} x = - \operatorname{cossech}^2 x$
$\frac{d}{dx}a^x = a^x \ln a$	$\frac{1}{dx} \arccos x = \frac{1}{\sqrt{1-x^2}}$	$\frac{d}{dx}\operatorname{csch} x = -\operatorname{coth} x \operatorname{cossech} x$
$\frac{1}{dx} \log_a x = \frac{1}{x}$	$\frac{1}{dx} \operatorname{arctg} x = \frac{1}{1+x^2}$	$\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{x^2 + 1}}$
$\frac{d}{dx} \sin x = \cos x$	$ax 1 + x^2$	
$\frac{d}{dx}\cos x = -\sin x$	$ x \vee x = 1$	$\frac{d}{dx}\operatorname{arccosh} x = \frac{1}{\sqrt{x^2 - 1}}$ $d \qquad 1$
$\frac{d}{dx}\operatorname{tg} x = \sec^2 x$		$\frac{d}{dx} \operatorname{arctanh} x = \frac{1}{1 - x^2}$
$\frac{d}{dx}\sec x = \sec x \operatorname{tg} x$.7	$\frac{d}{dx}\operatorname{arcsech} x = \frac{-1}{x\sqrt{1-x^2}}$
$\frac{d}{dx}\cot x = -\csc^2 x$		$\frac{d}{dx}\operatorname{arccoth} x = \frac{1}{1 - x^2}$
$\frac{d}{dx}\csc x = -\csc x \cot x$	$\frac{d}{dx} \operatorname{tgh} x = \operatorname{sech}^2 x$	$\frac{d}{dx} \text{ arccossech } x = \frac{-1}{ x \sqrt{1+x^2}}$

Identidades Trigonométricas

Regra de Leibniz

$$\frac{d}{dx} \int_{u(x)}^{v(x)} f(t)dt = f(v(x))v'(x) - f(u(x))u'(x).$$

Substituição Tangente do Ângulo Médio

$$z = \operatorname{tg} \frac{x}{2}$$
, $dx = \frac{2dz}{1+z^2}$, $\cos x = \frac{1-z^2}{1+z^2}$, $\operatorname{e} \quad \sin x = \frac{2z}{1+z^2}$