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Functional Analysis Exercises

1 Normed vector Spaces
1.1 — Let E be a normed space. Show that∣∣‖u‖− ‖v‖∣∣ ≤ ‖u− v‖, ∀u, v ∈ E.

Conclude that the norm is a continuous function.

1.2 — Let E be a normed space and let (xn)n∈N be a sequence in E. Prove that if xn → x

in E, then ‖xn‖→ ‖x‖ in R.

1.3 — A series
∑∞

n=1 xn in a normed vector space E is said to be absolutely convergent
if
∑∞

n=1 ‖xn‖ is convergent.

a) If E is a Banach space, prove if a series is absolutely convergent series then it is
convergent.

b) Suppose E is a Banach space. If there exists (Mn)n∈N ⊂ [0,+∞) such that

‖xn‖ ≤Mn, ∀n ∈ N and
∞∑
n=1

Mn < +∞,
then the series

∑∞
n=1 xn is absolutely convergent in E. This is known as Weierstrass

M-test.

1.4 — Let E a normed vector space. If F ⊂ E is closed and K ⊂ E is compact. If F∩K = ∅
prove that there exist ε > 0 such that dist(F, K) := inf{‖x− y‖; x ∈ F and y ∈ K} > ε.

1.5 — If M is a subspace of a normed space E, prove that M is also a subspace.

1.6 — Let (X, d) be a complete metric space. Consider a map f : X −→ X and suppose
that there exists λ ∈ (0, 1) such that

d(f(x), f(y)) ≤ λd(x, y)

for all x, y ∈ X. Consider x0 ∈ X and, for each n ∈ N, define xn = fn(x0), where

fn = f ◦ . . . ◦ f︸ ︷︷ ︸
n times

(n ∈ N).

a) Show that (xn)∞n=1 is a Cauchy sequence in X;

b) Show that a := lim
n→ +∞ xn is the unique fix point of f.
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2 Bounded Linear operators and Hahn-Banach Theorem
2.1 — Let E be a vector spaces and ϕ : E → R a linear mapping. Suppose there exists

C > 0 such that ϕ(x) ≤ C for all x ∈ E. Prove that ϕ = 0

2.2 — Let ϕ : E→ F be a linear operator. If there exists C > 0 such that

‖ϕ(z)‖ ≤ C, ∀z ∈ E with ‖z‖ < 1,

prove that ‖ϕ(x)‖ ≤ C, ∀x ∈ E such that ‖x‖ = 1. Conclude that ϕ ∈ L(E, F) and that
sup
x∈E

‖x‖<1

|ϕ(x)| = ‖ϕ‖.

2.3 — Let E, F be vector spaces and T : E→ F a bĳective linear mapping. Prove that T−1

is linear.

2.4 — Let (E1, ‖ · ‖1) and (E2, ‖ · ‖2) be two normed vector space. Prove that the mapping

(x, y) ∈ E1 × E2 7→ ‖(x, y)‖ = ‖x‖1 + ‖y‖2 ∈ R

is a norm on E1 × E2. And prove that E1 × E2 is complete iff E1 and E2 are completes.

2.5 — Let (E, ‖ · ‖) be a normed vector space.

a) Prove that the mappings
(x, y) ∈ E× E 7→ x+ y ∈ E

and
(λ, x) ∈ R× E 7→ λx ∈ E

are continuous.

b) Fixed x0 ∈ E and λ0 ∈ R, λ0 6= 0. Prove that the mapping

x ∈ E 7→ λ0x+ x0 ∈ E

is an homeomorphism.

2.6 — Let T : E −→ F be an linear operator. Prove that T ∈ L(E, F) if, and only if, T
maps bounded sets to bounded sets.

2.7 — Consider the space c0 with its usual norm. For every element u = (u1, u2, . . .) ∈ c0
define

f(u) =

+∞∑
n=1

1
2n
un.

Prove that f is continuous and find its norm.
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2.8 — Let E be a infinite dimensional normed vector space. Recall that every vector
space has a basis (Hamel basis). Construct a linear functional f : E −→ R that is not
continuous.

2.9 — For each n ∈ N, define

en = (0, . . . ,0, 1︸︷︷︸
nth term

,0, . . .).

Prove that (en)
∞
n=1 is not a Cauchy sequence in `p, where p ∈ [1,+∞) or p = ∞. In

particular, conclude that those spaces are infinite dimensional.

2.10 — Let E be a normed vector space and suppose x1, . . . , xn ∈ E are linearly inde-
pendent, where n ∈ N. Prove that there exist ϕ1, . . . , ϕn ∈ E′ such that ϕj(xk) = δjk for all
j, k ∈ {1, . . . , n}.

2.11 — Let E be a normed vector space. Prove that if ϕ(u) = 0, for all ϕ ∈ E ′, then
u = 0.

2.12 — Let E be a Banach space and ̂ : E→ E ′′ the canonical injection. Prove that if
X ⊂ E is closed, then X̂ ⊂ E ′′ is closed. In particular, E is a closed subspace of E ′′, where
we are identifying E with a subspace of E ′′ using the canonical injection.

2.13 — If M is a subspace of a normed vector space E, we set

M⊥ = {ϕ ∈ E ′; 〈ϕ, x〉 = 0, ∀x ∈M.}.

If M is a proper closed subspace of E, show that M⊥ 6= {0}.

2.14 — Let M be a proper closed subspace of a normed vector space E. Let u0 ∈ E
such that dist(u0,M) = infv∈M ‖u0 − v‖ = d > 0. Prove that there exists ϕ ∈ E ′ such that
ϕ(u0) = d, ϕ|M = 0 and ‖ϕ‖E ′ = 1.

2.15 — Let E be a normed space and let M be a closed subspace of E. We say x ∈ E
and y ∈ E are equivalents modulo M if x− y ∈M. In this case, we write

x = y(mod M).

a) Show that this is a equivalence relation. Let us denote by [x] the equivalence class
of each element x ∈ E;

b) Consider the quotient space of E modulo M, defined by

E/M = {[x]; x ∈ E} .
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Show that the mappings

([x], [y]) ∈ E/M× E/M 7−→ [x+ y] ∈ E/M

and
(λ, [x]) ∈ K× E/M 7−→ [λx] ∈ E/M

are well defined. Prove that E/M is a vector space with these operations.

c) Let F be a vector space and consider a linear mapping T : E −→ F. Show that there
exists a linear bĳection between

E/ ker T and R(T).
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3 Uniform Boundedness Principle, Open Mapping and

Closed Graph theorem.
3.1 — Define a sequence of functionals Tn : c00 → R by

Tn0 = 0, and Tnx =
n∑
i=1

xi.

a) Prove that Tn ∈ X ′.

b) Prove that for any x ∈ X, (Tnx) is bounded, but (Tn) is not uniformly Bounded.

c) Why it doesn’t contradict Banach-Steinhaus Theorem?

3.2 — Let E be a Banach space, F a normed vector space and (Tn) ⊂ L(E, F) such that
supn ‖Tn‖ = +∞. Show that there exists an x0 ∈ E such that supn ‖Tnx0‖ = +∞.

3.3 — Let E, F be Banach spaces and T : E −→ F be an operator (not necessarily linear).
Suppose there exist an operator T ∗ : F ′ −→ E ′, called adjoint operator, defined by T ∗ϕ =

ϕ ◦ T . Prove that

a) T ∈ L(E, F). b) ‖T ∗‖ = ‖T‖.

(See a hint at the end.)

3.4 — Let E be a Banach space and F and G normed vector spaces. Suppose u : E×F −→
G is a separately continuous bilinear mapping, that is, for every x ∈ E and y ∈ F, the linear
mappings

ux : w ∈ F 7−→ u(x,w) ∈ G and uy : z ∈ E 7−→ u(z, y)G

are continuous. Prove that u is continuous, that is, there exists a constant C > 0 such
that

‖u(x, y)‖ ≤ C‖x‖‖y‖, ∀x ∈ E, ∀y ∈ F.

3.5 — Show that completeness of E is essential in the Banach-Steinhaus Theorem and
cannot be omitted. Consider x = (xk) ∈ c00 and define Tnx = nxn.

3.6 — Let E be a Banach space, F a normed space and Tn ∈ L(E, F) such that (Tnx) is
Cauchy in F for every x ∈ E. Show that (‖Tn‖) is bounded.

* 3.7 — Let x = (xn) be a real sequence such that
∑∞

n=1 xnyn converges for every y =

(yn) ∈ c0. Show that
∑∞

n=1 |xn| converges.
(See a hint at the end.)
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3.8 — Let E be a normed vector space and M a closed subspace of E. For each X ∈ E/M,
set

‖X‖ = inf{‖x‖; x ∈ X}.

a) Show that [x] = x+M and that ‖[x]‖ = dist(x,M) for each x ∈ E;

b) Show that the mapping defined in the statement of the exercise is a norm on E/M;

c) Show hat the canonical injection

π : x ∈ E 7−→ [x] ∈ E/M

is continuous an open mapping. (See a hint at the end.)

(d)If E is a complete space, show that E/M is also complete.

3.9 — Show that every linear functional in E ′ is an open mapping.

3.10 — Let E, F be Banach spaces. If T ∈ L(E, F) is surjective, show that there exists
C > 0 such that for every y ∈ F the equation Tx = y has a solution xy ∈ E such
‖xy‖ ≤ C‖y‖.

3.11 — Let E be a Banach space and let T : E→ E ′ be a linear operator satisfying

〈Tx, y〉 = 〈Ty, x〉, ∀x, y ∈ E.

Use Closed Graph Theorem to prove that T is bounded.

3.12 — Let E be a Banach space and T : E −→ E ′ be a linear operator satisfying

〈Tx, x〉 ≥ 0, ∀x ∈ E.

Prove that T is a bounded operator. (See a hint at the end.)

** 3.13 — The aim of this exercise is prove the following proposition.

Proposition. Every closed vector subspace of continuously differentiable functions in C0([−1, 1])
is finite dimensional.

Part I

a) Let E be a closed subspace of in C0([−1, 1]), with the induced norm, that all its
elements are continuously differentiable functions. Prove that E is a closed subspace
in C1([−1, 1]) with the norm ‖ · ‖C1 .
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b) Prove (E, ‖ · ‖C1) is a Banach space.

c) Let us set E1 = (E, ‖ · ‖C1) and E∞ = (E, ‖ · ‖∞). Prove that Id : E1 −→ E∞ is a
homeomorphism.

Part II

In this part we will apply the Ascoli-Arzelà Theorem, namely
Theorem (Ascoli-Arzelà). Let K be a compact metric space. A bounded subset F of
C0(K;Rn) is relatively compact if, and only if, F is equicontinuous, that is,

∀ε > 0, ∃δ > 0 such that d(x1, x2) < δ⇒ |f(x1) − f(x2)| ≤ ε, ∀f ∈ F .

a) Prove that Id(B1) satisfies the hypotheses of Ascoli-Arzelà’s theorem.

b) Conclude that B1 is compact and therefore dimE1 <∞.
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4 Weak Topologies
4.1 — Let E be a reflexive space and (xn)n∈N ⊂ E a sequence such that (f(xn))n∈N is

convergent for all f ∈ E ′. Show that there exists x ∈ E such that xn ⇀ x in σ(E, E ′).

4.2 — Let T ∈ L(E, F). Show that if xn ⇀ x in E, then Txn ⇀ Tx in F.

4.3 — Let E, F be Banach spaces. If T : E −→ F is a linear operator that maps strongly
convergent sequences to zero into weakly convergent sequences to zero, prove that T is
continuous.

4.4 — Let E be a Banach space and let A ⊂ E be a compact subset in the weak topology
σ(E, E ′). Prove that A is bounded.

4.5 — Let E be a reflexive Banach space and K ⊂ E be a convex, closed and bounded
set. Prove that K is compact in σ(E, E ′).

4.6 — Let E be a Banach space and let K ⊂ E be a compact set in the strong topology.
If (xn) is a sequence in K such that xn ⇀ x in σ(E, E ′), prove that xn → x strongly.
(See a hint at the end.)

8



Universidade Federal Fluminense
Instituto de Matemática e Estatı́stica
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5 Hilbert Spaces
5.1 — Let E be a vector space endowed with a scalar product. If u, v ∈ E and u ⊥ v,

then ‖u+ v‖2 = ‖u‖2 + ‖v‖2.

5.2 — Let H be a Hilbert space and (xn)n∈N ⊂ H. Prove that if xn ⇀ x and ‖xn‖→ ‖x‖.
5.3 — Let H be a Hilbert space and let (xn)n∈N be an orthonormal sequence in H. Prove

the Bessel’s inequality ∞∑
n=1

|(xn, y)|
2 ≤ ‖y‖2, ∀y ∈ H.

5.4 — Let H be a Hilbert space and (xn) be a sequence in H. Prove that

xn → x in σ(H,H ′)⇔ (xn, y)→ (x, y), ∀y ∈ H.

5.5 — Let H be a Hilbert space and (xn) ⊂ H an orthonormal sequence. Prove that
xn ⇀ 0 in σ(H,H ′).

5.6 — Let (en) be an orthonormal Hilbertian basis.

a) Given any sequence (αn) ∈ `2. Prove that the series
∑∞

k=1 αkek converges to some
element u ∈ H such that (u, ek) = αk for all k ∈ N and ‖u‖2 =

∑∞
k=1 α

2
k.

b) Prove that every separable Hilbert space is isomorphic to `2.
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6 Compact operators, Spectral Theorem
6.1 — Let f : X→ Y be a continuous function. If A ⊂ X, then f(A) ⊂ f(A).

6.2 — Let X and Y be a normed vector spaces and let f : X→ Y be a linear isometry. If
f(K) ⊂ Y is compact, then K is compact.

6.3 — Let X and Y be Banach spaces and let T : X −→ Y be a linear, surjective isometry.
If Y is reflexive, then X is reflexive.
(See a hint at the end.)

6.4 — Let H be a Hilbert space. Prove that if T ∈ K(H), then there exists a sequence
(Tn) ∈ K(H) with finite rank such that Tn → T .
(See a hint at the end.)

6.5 — Given x = (x1, x2, . . .) ∈ `2 define the operators

Srx = (0, x1, x2, . . . , xn−1, . . .) and S`x = (x2, x3, . . . , xn+1, . . .),

respectively called the right shift and left shift.

a) Determine ‖Sr‖ and ‖S`‖. Does they belong to K(`2)?

b) Prove that EV(Sr) = ∅.

c) Prove that σ(Sr) = [−1, 1].

d) Prove that EV(S`) = (−1, 1). Determine the corresponding eigenspace.

e) Prove that σ(S`) = [−1, 1].

6.6 — Let K : [0, 1] × [0, 1] → R be a continuous mapping and E = (C0([0, 1]), ‖ · ‖∞).
Define J : E −→ E by

Jf(x) =

∫ 1
0
K(x, ξ)f(ξ)dξ.

Show that J ∈ K(E). Does J has an inverse?

6.7 — Let T : `2 −→ `2 be a mapping defined by Tx =
(x1

2
,
x2

22 , . . . ,
xn

2n
, . . .

)
, where

x = (xn) ∈ `2.

a) Show that there exists a sequence (Tn) of finite-rank bounded linear operators such
that Tn → T .

b) Prove that σ(T) = {0} ∪
{ 1

2n ;n ∈ N
}
.
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7 Answers and Hints

3.3 – Use Exercises 2.11 and 2.6.

3.7 – Define Tny =
∑n

k=1 xnyn and use Banach-Steinhaus Theorem.

3.8 – Verify that π(BE) = BE/M.

3.12 – Use Closed Graph Theorem: Given (xn) ⊂ E such that xn → x in E and Txn → ϕ in
E ′. Passing to the limit in the inequality 〈Txn − Ty, xn − y〉 ≥ 0 leads to

〈ϕ− Ty, x− y〉 ≥ 0, ∀y ∈ E.

Choosing y = x+ tz with t ∈ R and z ∈ E, one sees that ϕ = Tx.

4.6 – Argue by contradiction.

6.3 – Prove that T ∗∗ is also a surjective isometry.

6.4 – Use projection.
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