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Metric Spaces

Definition 1.1.

A metric on a set X is a function d : X ×X → R having the following properties for any
x, y, z ∈ X:

1 d(x, y) ≥ 0;

2 d(x, y) = 0⇔ x = y;

3 d(x, y) = d(y, x);

4 d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

A metric space is the pair (X, d), where X is a set and d is a metric on X.
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Normed Spaces

Definition 1.2.

Let E be a real vector space. A norm on E is a function ‖ · ‖ : E → R having the following
properties for any x, y ∈ E and any λ ∈ R:

1 ‖x‖ ≥ 0;

2 ‖x‖ = 0⇔ x = 0;

3 ‖λx‖ = |λ|‖x‖;
4 ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

A vector space E endowed with a norm ‖ · ‖ is called normed vector spacea and denoted by
(E, ‖ · ‖).

aThis definition was given (independently) by Banach, Hahn and Wiener.
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Exercise 1.3.

1 Show that if (E, ‖ · ‖) is a normed space, then E is a metric space with the metric
defined by d(x, y) = ‖x− y‖.

2 Examples of norms on Rn are:

‖x‖ =

(
n∑
k=1

|xk|2
) 1

2

, ‖x‖m = max
1≤k≤n

|xk| e ‖x‖s =
n∑
k=1

|xk|.

3 The set of all bounded function from X into R, denoted by B(X), is a normed space with
the norm ‖f‖∞ = sup

x∈X
|f(x)|.
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Exercise 1.4.

1 A sequence (fn)n∈N on B(X) converges to f on B(X) if, and only if, (fn)n∈N converges
uniformly to f on X.

2 Let C0([a, b]) be the set of all continuous functions from [a, b] into R, which is a vector
subspace of B([a, b]). C0([a, b]) is a normed vector space with the norm defined by:

‖f‖
L1 =

∫ b

a
|f(t)|dt.
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Definition 1.5.

A complete normed vector space is called Banach space.

Example 1.6.

B(X) is a Banach space.

Exercise 1.7.

Show that C1([a, b]), the set of all continuously differentiable functions f : [a, b]→ R, with a
norm defined by

‖f‖C1 := ‖f‖∞ + ‖f ′‖∞,

is a Banach space.
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The spaces `p

Definition 1.8.

Let 1 ≤ p <∞. We define `p to be the set of all p−summable real sequences, i.e.,

`p =

{
(xn)n∈N;

∞∑
n=1

|xn|p converges .

}

with the norm

‖x‖p =

( ∞∑
n=1

|xn|p
)1/p

.

For p =∞ we define `∞ := B(N).

Proposition 1.9.

`p is a Banach space.
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Exercise 1.10.

Assume p, q ∈ [1,∞] and 1
p +

1
q = 1. Given x1, . . . , xn, y1, . . . , yn ∈ R,

1 prove Hölder’s Inequality (see [Dinamérico]):

n∑
k=1

|xkyk| ≤

(
n∑
k=1

|xk|p
)1/p( n∑

k=1

|yk|q
)1/q

.

2 prove Minkowski’s Inequality (see [Dinamérico]):(
n∑
k=1

|xk + yk|p
)1/p

≤

(
n∑
k=1

|xk|p
)1/p

+

(
n∑
k=1

|yk|q
)1/q

3 Conclude `p is a normed space.
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Exercise 1.11.

If M is a vector subspace of a normed vector space E, then M is also a normed vector space if
we consider on M the same norm on E. In this case, the norm on M is said to be induced by
the norm on E.

Example 1.12.

Let

c: the set of all convergent sequences on R.

c0: the set of all convergent sequences to zero.

c00: the set of all sequences which have only finitely many nonzero elements.

We have that c00 ⊂ c0 ⊂ c are normed vector spaces with the induced norm by `∞.
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Proposition 1.13.

If M is a closed vector subspace of a Banach space E, then M is a Banach space with respect
to the induced norm.

Exercise 1.14.

1 Show that C0(X), where X is compact, with the norm ‖ · ‖∞ is a Banach space.

2 The space c of example 1.12 is a Banach space.

3 Show that

xn =

(
1,

1

2
, . . . ,

1

n
, 0, . . . , 0, . . .

)
is a Cauchy sequence in c00 and that xn → x, where

x =

(
1,

1

2
, . . . ,

1

n
,

1

n+ 1
, . . .

)
∈ c.

Conclude c00 is not a Banach space.
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Bounded linear operators

Definition 2.1.

Let (E, ‖ · ‖E) and (F, ‖ · ‖F ) be normed vector spaces. A mapping from E into F is called an
operator. A mapping from E into its scalar field is called a functional.
We say a linear operator T : E → F is bounded a if there exists a constant M > 0 such that

‖Tx‖F ≤M‖x‖E , ∀x ∈ E.

We will denote by L(E,F ) the vector space of all bounded linear operators form E into F .

aThe word bounded is used here in the sense that T maps bounded sets into bounded sets. In
the usual notion of a bounded function, no linear function could be bounded.
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Proposition 2.2.

Let T : E → F be a linear operator. Then the following statements are equivalents:

1 T is continuous in the origin.

2 T is bounded.

3 T is uniformly continuous.
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Exercise 2.3.

Prove that L(E,F ) is a normed vector space with its norm defined by

‖T‖ := sup
x∈E
x 6=0

‖Tx‖F
‖x‖E

.

Proposition 2.4.

If T ∈ L(E,F ), then

‖T‖ = sup
x∈E
x6=0

‖Tx‖F
‖x‖E

= sup
x∈E

‖x‖≤1

‖Tx‖F = sup
x∈E

‖x‖=1

‖Tx‖F .
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Proposition 2.5.

If E is a normed vector space and F is a Banach space, then L(E,F ) is a Banach space.

Definition 2.6.

L(E,R) is called topological dual of E and is denoted by E′. Given ϕ ∈ E′ and x ∈ E we shall
often write 〈ϕ, x〉 instead f(x). We say that 〈 , 〉 is the scalar product for the duality E′, E.

Corollary 2.7.

E′ is a Banach space.

Prof. Reginaldo (IMEUFF) Análise Funcional Escola de Verão de 2021 16 / 96



Definition 2.8.

Let E and F normed vector spaces. A linear operator T : E → F is said to be a topological
isomorphism if T is bijective, T and T−1 are continuous. In this case we say E and F are
isomorphic.

Proposition 2.9.

A surjective linear operator T : E → F is an isomorphism if, and only if, there exist constants
m,M > 0 such that

m‖x‖E ≤ ‖Tx‖F ≤M‖x‖E , ∀x ∈ E.

Exercise 2.10.

Let E,F be isomorphic vector spaces. E is a Banach space if, and only if, F is a Banach
space.
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Definition 2.11.

Two norms ‖ · ‖1 and ‖ · ‖2 on the same vector space E are said to be equivalents if the
identity operator

IdE : (E, ‖ · ‖1)→ (E, ‖ · ‖2)

is an isomorphism.

Proposition 2.12.

In order to have two equivalent norms ‖ · ‖1 and ‖ · ‖2 it is necessary and sufficient that there
exist constants C1, C2 > 0 such that

C1‖x‖1 ≤ ‖x‖2 ≤ C2‖x‖1, ∀x ∈ E.
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Finite dimenstional normed spaces

Proposition 2.13.

Every finite dimensional normed spaces are isomorphic.

Exercise 2.14.

Let E be a finite dimensional normed vector space. Then

1 Every norms are equivalents.

2 E is a Banach space.

3 If T : E → F is linear then T ∈ L(E,F ).
4 A subset of E is compact iff it is a closed and bounded set.
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Proposition 2.15.

Let E be a normed vector space such that the closed unit ball is compact, then E is finite
dimensional.

Lemma 2.16 (Riez).

Let F be a closed proper vector subspace of E. Then, given 0 < ε < 1, there exists x0 ∈ E
such that ‖x0‖ = 1 and dist(x0, F ) ≥ ε.
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Hahn-Banach Theorem

Definition 3.1.

Let E be a real vector space. We say a functional p : E → R is sublinear if satisfies:

1 p(x+ y) ≤ p(x) + p(y) for every x, y ∈ E. (subadditive)

2 p(λx) = λp(x) for every x ∈ E and every λ > 0. (positive-homogeneous)

Example 3.2.

If E is a normed vector space, a norm is a sublinear functional.
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Theorem 3.3 (Teorema de Hahn-Banach Forma Anaĺıtica1).

Let E be a real vector space, M a subspace of E and p : E → R a sublinear functional. If
ϕ :M → R is a linear functional that satisfies ϕ(x) ≤ p(x) for all x ∈M , then ψ has a linear
extension ψ : E → R. Furthermore, ψ(x) ≤ p(x) for all x ∈ E.

The theorem was discovered by H. Hahn (1927), rediscovered in its present form by S. Banach
(1929) and generalized to complex vector spaces by H. F. Bohnenblust and A. Sobczyk (1938), see
[Kreyszig, Chapter 4.2]

Remark 3.4.

The crux of Hahn-Banach’s Theorem is not the existence of a linear extension of ϕ, but that
this extension is still majorized by p.
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Hahn-Banach Theorem for normed spaces

Corollary 3.5 (Hahn-Banach Theorem for normed spaces).

Let M be a subspace of a normed vector space E. If ϕ ∈M ′, the there exists ψ ∈ E′ that
extends ϕ and such that ‖ψ‖E′ = ‖ϕ‖M ′ .

Corollary 3.6.

Let E be a normed vector space and x0 ∈ E \ {0}. Then there exists ψ ∈ E′ such that
〈ψ, x0〉 = ‖x0‖ and ‖ψ‖E′ = 1.
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Exercise 3.7.

Let E be a normed vector space. Prove that:

1 For every x0 ∈ E there exists ϕ0 ∈ E′ such that ‖ϕ0‖ = ‖x0‖ and 〈ϕ0, x0〉 = ‖x0‖2.

2 For every x ∈ E, ‖x‖ = sup
ϕ∈E′
‖ϕ‖≤1

|〈ϕ, x〉|.
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Zorn’s Lemma

Definition 3.8.

Let O be a set with a partial order relation ≤. A subset P ⊂ O is said to be totally ordered if

∀x, y ∈ P, one has x ≤ y or y ≤ x.

The set O is said to be inductive if every totally ordered subset P has an upper bound in O,
that is,

∃c ∈ O such that x ≤ c, ∀x ∈ P.

We say m ∈ O is a maximal element of O if there is no element x ∈ O such that m ≤ x,
except for x = m.
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Lemma 3.9 (Zorn).

Every nonempty partially ordered set that is inductive has a maximal element.

Remark 3.10.

Zorn’s lemma has many important applications in analysis. One of them is to prove that every
vector space has a (Hamel) basis, see [Kreyszig, section 4.1]
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Canonical embedding from E into E”

Definition 3.11.

Let E be a normed vector space. The topological dual of E′, denoted by E′′ is called bidual of
E.

Proposition 3.12.

For each x ∈ E, we define the evaluation functional x̂ : E′ → R by x̂(ϕ) = 〈ϕ, x〉. Then
x̂ ∈ E′′ and ‖x̂‖ = ‖x‖. In other words, the operator ̂ : E → E′′ is an isometry.

Remark 3.13.

Some authors use the notation J : E → E′′ instead of .̂
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Espaços Reflexivos

Definition 3.14.

The isometry ̂ defined in Proposition 3.12 is called canonical embedding of E into E′′. If
the canonical embedding is surjective, that is, Ê = E′′, we say E is reflexive.

Exercise 3.15.

Show that:

1 Every reflexive space is Banach.

2 If dimE <∞ then E is reflexive.
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Geometric forms of the Hahn-Banach Theorem

Definition 3.16.

Let E be a normed vector space. A affine hyperplane of E is a subset of the form

H = {x ∈ E; ϕ(x) = α},

where ϕ is a linear functional, not necessarily bounded, that does not vanish identically and
α ∈ R. In this case, we denote H by [ϕ = α].

Proposition 3.17.

The hyperplane [ϕ = α] is closed if, and only if, ϕ ∈ E′.
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1º Geometric form of the Hahn-Banach Theorem

Definition 3.18.

Let A and B be two subsets of the normed vector space E. We say that the hyperplane
[ϕ = α] separates A and B if

ϕ(x) ≤ α, ∀x ∈ A and ϕ(x) ≥ α, ∀x ∈ B.

Theorem 3.19 (1º Geometric form of the Hahn-Banach Theorem).

Let E be a normed vector space and A,B ⊂ E nonempty disjoint convex subsets. If one of
them is open, then there exists a closed hyperplane that separates A e B.

Prof. Reginaldo (IMEUFF) Análise Funcional Escola de Verão de 2021 30 / 96



Minkowski Functional

Definition 3.20.

Let A be an open convex subset of a normed vector space E such that 0 ∈ A. The Minkowski
Functional of A is a mapping pA : E → R defined by

pA(x) = inf{α > 0; x ∈ αA}.

Exercise 3.21.

Show that pA is well defined, that is, for each x ∈ E, X = {α > 0; x ∈ αA} 6= ∅ and
bounded from below.
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Proposition 3.22.

The Minkowski functional satisfies:

a pA(x) ≥ 0, ∀x ∈ E and pA(0) = 0.

b pA is sublinear.

c A = {x ∈ E; pA(x) < 1}.
d There exists M > 0 such that pA(x) ≤M‖x‖, ∀x ∈ E.

Lemma 3.23.

Let E be a normed vector space and A ⊂ E a nonempty open convex set. If x0 ∈ E \A, then
there exists ϕ ∈ E′ such that ϕ(x0) = α and ϕ(x) < α, ∀x ∈ A. In particular, the hyperplane
[ϕ = α] separates {x0} and A.
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2º Geometric form of the Hahn-Banach theorem

Definition 3.24.

Let A and B be two subsets of a normed vector space E. We say [ϕ = α] strictly separates A
and B when there exists ε > 0 such that

ϕ(x) ≤ α− ε, ∀x ∈ A and ϕ(x) ≥ α+ ε, ∀x ∈ B.

Theorem 3.25 (2º Geometric form of the Hahn-Banach theorem).

Let F and K nonempty convex and disjoint subsets of a normed vector space E. If F is closed
and K is compact, then there exists a closed hyperplane that strictly separates F and K.
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Remark 3.26.

1 Assume A,B ⊂ E are nonempty convex and disjoint sets. If we make no further
assumption, it is in general impossible to to separate them by a closed hyperplane. One
can even construct such an example in which A and B are both closed. See [Brezis,
Exercise 1.14].

2 In finite-dimensional spaces one can always separate any two nonempty convex and
disjoint sets. [Brezis, Exercise 1.9]
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Definition 3.27.

Let E be a normed vector space espaço vetorial normado and F ⊂ E a vector subspace of E.
The annihilator of F , denoted by F⊥, is the set of all bounded linear operators that vanish in
F , that is,

F⊥ = {ϕ ∈ E′;ϕ(x) = 0, ∀x ∈ F}

Corollary 3.28.

Given E a normed vector space and F ⊂ E a subspace of E. If F⊥ = {0}, then F is dense in
E, that is, F = E.
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Historical Note: [Lax, page 172]

Stefan Banach (1892-1945), a Polish mathematician, was one of the founding fathers of
functional analysis. Banach spaces are named in recognition of his numerous and deep
contributions, and for having written the first monograph on the subject (1932). He was the
inspiration of the brilliant Polish school of functional analysis. During the Second World War,
Banach was one of a group of people whose bodies were used by the Nazi occupiers of Poland
to breed lice, in an attempt to extract an anti-typhoid serum. He died shortly after the
conclusion of the war.
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Teorema de Banach-Steinhaus

Theorem 4.1 (Baire).

Let (X, d) be a nonempty complete metric space. If X is a countable union of closed sets,
then at least one of them has nonempty interior.

Theorem 4.2 (Banach-Steinhaus).

Let (Ti)i∈I be a family (not necessarily countable) in L(E,F ), where E is a Banach space. If
for each x ∈ E there exists Cx > 0 such that

‖Tix‖ ≤ Cx, ∀i ∈ I,

then there exists C > 0 such that

‖Ti‖L(E,F ) < C, ∀i ∈ I.
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Corollary 4.3.

Let (Tn) be a sequence in L(E,F ) where E is a Banach space. If for each x ∈ E, Tnx
converges to an element of F , which will denote by Tx, then

1 supn ‖Tn‖L(E,F ) <∞,
2 T ∈ L(E,F ),
3 ‖T‖L(E,F ) ≤ lim infn→∞ ‖Tn‖L(E,F ).
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Exercise 4.4.

1 Show that the condition E Banach is essential. Let c00 defined in example 1.12, which is
not a Banach space, as we have seen in Example 1.14. Define Tm : c00 → R by
Tmx = mxm, where x = (xn)n∈N. (Tm)m∈N. Prove that Tmx is bounded for each
x ∈ c00 but it is not uniformly bounded.

2 Let S` : `
2 → `2 be the left shift operator, defined by

S`(x1, . . . , xn, . . .) = (x2, . . . , xn, . . .), and define Tn = Sn` = S` ◦ · · · ◦ S`︸ ︷︷ ︸
n times

. Find ‖Tnx‖

and the limit operator of the Banach-Steinhaus Theorem.
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Corollary 4.5.

Let E be a normed vector space and B be a subset of E. If for every ϕ ∈ E′ the set ϕ(B) is
bounded, then B is bounded.

Exercise 4.6.

Let E be a Banach space and B′ be a subset of E′. If for every x ∈ E the set
B′(x) = {ϕ(x); ϕ ∈ B′} is bounded then B′ is bounded.
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Open Mapping Theorem

Theorem 5.1.

Let E and F be Banach spaces and ϕ ∈ L(E,F ) surjective. Then there exists c > 0 such that

ϕ(BE(0, 1)) ⊃ BF (0, c).

In particular, ϕ is an open mapping, that is, ϕ maps open sets of E into open sets of F .

Corollary 5.2.

Let E and F Banach spaces and ϕ ∈ L(E,F ) bijective. Then ϕ−1 ∈ L(F,E).
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Exercise 5.3.

Show that T : `1 → `1 given by T (x1, x2, . . . , xn, . . .) = (x1, x2/2, . . . , xn/n, . . .) is linear,
continuous and invertible, but its inverse is not an continuous operator.

Corollary 5.4.

Let E be a vector space and let ‖ · ‖1 and ‖ · ‖2 be two norms on E such that E is a Banach
space with respect to both norms. If there exists C > 0 such that

‖x‖2 ≤ C‖x‖1, ∀x ∈ E,

then the norms are equivalents.

Example 5.5.

C0([0, 1]) with the norm ‖f‖L1 =
∫ 1

0 |f(x)|dx is not a Banach space.
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Proof of Open Mapping Theorem

Exercise 5.6.

If ϕ : E −→ F ∈ is an linear operator, prove that:

1 ϕ(BE(x, ε)) = ϕ(x) + εϕ(BE(0, 1)).

2 rϕ(BE(0, 1)) = ϕ(BE(0, r)), ∀r > 0.

3 B(x, r) ⊂ kA, k > 0⇒ B
(
x
k ,

r
k

)
⊂ A.
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Closed Graph Theorem

Definition 5.7.

A linear operator T : E → F is said to be closed if its graph

G(T ) = {(x, Tx) ⊂ E × F ; x ∈ E}

is a closed subspace of E × F with respect to the norm

‖(x, y)‖E×F = ‖x‖E + ‖y‖F .

Equivalently, if for any sequence (xn) ⊂ E such that xn → x in E and Txn → y in F one has
that Tx = y.

Exercise 5.8.

Every linear continuous operator is closed.
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Closed Graph Theorem

Example 5.9.

The operator T−1 : Im(T ) ⊂ `1 → `1 of exercise 5.3 is closed but is not continuous.

Theorem 5.10 (Closed Graph Theorem).

Let E,F Banach spaces. If ϕ : E → F is a closed linear operator, then ϕ is continuous.

Example 5.11.

C1([0, 1]) with respect to the norm ‖ · ‖∞ is not a Banach space.
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Basic Topological Concepts

Definition 6.1.

A topology on a set X is a collection T of subsets of X, called opens sets of X, such that ∅
and X are open and such that arbitrary unions and finite intersections of open sets are open.

Definition 6.2.

Suppose T e T ′ are two topologies on a given set X. We say T is coarser than T ′ whenever
T ⊂ T ′. We also say T ′ is finer than T .
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Definition 6.3.

Let X be a nonempty topological space. A neighborhood of a point x ∈ X is an open set that
contains x.
A neighborhood basis for a point x ∈ X is a set B(x) which elements are neighborhood of x
and such that any neighborhood of x contain an element of B(x), that is, if V is a
neighborhood of x, then there exists U ∈ B(x) such that U ⊂ V .

Example 6.4.

Let M be a metric space and consider x ∈M . Then the set {B(x, r); r > 0} is a
neighborhood basis for x.
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Definition 6.5.

A subbasis S for a topology on X is a collection of subsets of X whose union equals X. The
topology generated by the subbasis S is defined to be the collection T of all unions of finite
intersections of elements of S.

Definition 6.6.

A topological space X is called a Hausdorff space if for each pair x1, x2 of distinct point of X,
there exist disjoint neighborhoods U1 and U2 of x1 and x2, respectively.

Definition 6.7.

Let X be a topological space. We say a sequence (xn) ⊂ X converge to x ∈ X if for every
neighborhood U of x there exists n0 ∈ N such that xn ∈ U for all n ≥ n0.
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Initial topology

Definition 6.8.

Let X be a nonempty set (without any structure), (Yi)i∈I a collection of topological spaces
and F = (ϕi)i∈I a family of mappings ϕi : X → Yi. The initial topology on X, denoted by
σ(X,F), is that generated by the subbasis

S = {ϕ−1
i (ωi); ω ⊂ Yi open, i ∈ I}
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Proposition 6.9.

1 σ(X,F) is the coarsest topology that make the functions in F continuous.

2 For each x ∈ X, the set

B(x) =

⋂
j∈J

ϕ−1
j (ωj); J ⊂ I is finite and ωj is a neighborhood of ϕj(x) in Yj .


is a neighborhood basis for x with respect to σ(X,F).
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Exercise 6.10.

A classical example of this kind of topology is the product topology on the product space
X =

∏
α∈ΛXα of a family of sets (Xα)α∈Λ. This is the coarser topology that makes all

projection mappings πα : X → Xα continuous. Review the product topology and Tychonoff
Theorem in [Munkres, Sections 2-19 and 5-37].

Proposition 6.11.

Let X be a set with the topology σ(X,F) and (xn) be a sequence in X. Then,

xn → x in X ⇔ ϕi(xn)→ ϕi(x), ∀i ∈ I.

Proposition 6.12.

Let Z be a topological space and let X with the topology σ(X,F). A mapping ψ : Z −→ X
is continuous iff ϕi ◦ ψ : Z −→ Yi is continuous for all i ∈ I.

Prof. Reginaldo (IMEUFF) Análise Funcional Escola de Verão de 2021 51 / 96



Weak Topology

Definition 6.13.

If E is a normed vector space we call σ(E,E′) the weak topologoy on E.

Properties

From Proposition 6.9 we have the following properties to σ(E,E′):

1 It the coarsest topology that makes the functions in E′ continuous.

2 For each x ∈ E, a neighborhood basis for x is given by

B(x) =

{⋂
i∈I

f−1
i (ωi); fi ∈ E′, I is finite and ωi is a neighborhood of fi(x)

}
.
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Proposition 6.14.

The weak topology σ(E,E′) is Hausdorff.

Proposition 6.15.

Let E be a normed vector space and x0 ∈ E. The following family of sets

V (x0, f1, . . . , fk; ε) = {x ∈ E; |fi(x)− fi(x0)| < ε, ∀i = 1, 2, . . . , k}

=

k⋂
i=1

f−1
i

(
(fi(x0)− ε, fi(x0) + ε)

)
form a neighborhood basis of x0 for the weak topology σ(E,E′).
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Proposition 6.16.

If E is a finite dimensional space, then the weak and strong topologies are the same.

Proposition 6.17.

Let E be a normed vector space and C ⊂ E a convex subset. Then C is closed in the weak
topology if, and only if, it is closed in the strong topology.
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The weak topology is strictly coarser than the strong topology

Proposition 6.18.

If E is a infinite dimensional normed vector space then any neighborhood V of x0 in σ(E,E′)
contain a line passing through x0.

Example 6.19.

1 If E is a infinite dimensional normed vector space then the unit sphere
S = {x ∈ E; ‖x‖ = 1} is not closed in the weak topology σ(E,E′). Precisely, the
closure of S in the weak topology equals to the closed unit ball in E.

2 If E is a infinite dimensional normed vector space then the unit ball is not weakly open.
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Weak convergence

Definition 6.20.

Given a sequence (xn) ⊂ E, we denote by xn ⇀ x or more precisely

xn ⇀ x weakly in σ(E,E′),

the convergence of (xn) to x in the weak topology σ(E,E′).

Proposition 6.21.

Let (xn) be a sequence in E. Then,

1 xn ⇀ x if, and only if, 〈f, xn〉 → 〈f, x〉 for all f ∈ E′.
2 If xn → x strong, then xn ⇀ x weak in σ(E,E′).

3 If xn ⇀ x weak in σ(E,E′), then (‖xn‖) is bounded and ‖x‖ ≤ lim inf ‖xn‖
4 If xn ⇀ x weak in σ(E,E′) and fn → f strong in E′, then 〈fn, xn〉 → 〈f, x〉.
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Proposition 6.22.

Let E and F be Banach spaces and T : E −→ F be linear operator. T ∈ L(E,F ) if, and only
if, T is continuous from E into F with its respective weak topologies.
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Weak* topology

Definition 6.23.

Let E be a normed vector space. The weak* topology on E′ is the topology σ(E′, Ê), that is,
the coarsest topology on E′, that make the family of linear functionals (x̂)x∈E continuous.
Since we can identify E and Ê, we will denote this topology simply by σ(E′, E).

Remark 6.24.

1 Since Ê ⊂ E′′, σ(E′, E) is coarser than σ(E′, E′′), that is, the weak topology on E′. In
other words, the weak* topology has fewer open set than the weak topology on E′.

2 Weak topologies are important because a coarser topology has more compact sets. For
example, the closed unit ball in E′, which is never compact in the strong topology
( unless dimE < +∞ as we have seen in Proposition 2.15) is always compact in the
weak* topology, as we will see in Theorem 6.32. Hence, this kind of topology has
applications on minimization problems, for example.
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Proposition 6.25.

1 The weak* topology is generated by the subbasis

{x̂−1(ωx); ωx is an open set in R, and x ∈ E}

2 For each f ∈ E′, a neighborhood of f for the topology σ(E′, E) is given by

B(f) =

{⋂
x∈I

x̂−1(ωx); I ⊂ E finite and ωx is a neighborhood of 〈x̂, f〉

}
.

Proposition 6.26.

The weak* topology σ(E′, E) is Hausdorff.

Prof. Reginaldo (IMEUFF) Análise Funcional Escola de Verão de 2021 59 / 96



Proposition 6.27.

Let E be a normed vector space and f0 ∈ E′. The following family of sets

V (f0;x1, . . . , xk; ε) = {f ∈ E′; |〈f, xi〉 − 〈f0, xi〉| < ε, ∀i = 1, 2, . . . , k}

=

k⋂
i=1

x̂−1
i

(
(〈x̂i, f0〉 − ε, 〈x̂i, f0〉+ ε)

)
form a neighborhood basis of f0 for the weak* topology σ(E′, E).
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Weak* convergence

Definition 6.28.

Let (fn) ⊂ E′ be a sequence, we will denote by fn
∗
⇀ f or more explicitly by

fn
∗
⇀ f weakly in σ(E′, E),

the convergence of (fn) to f in the topology σ(E′, E).
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Proposition 6.29.

Let (fn) be a sequence in E′. Then,

1 fn
∗
⇀ f if, and only if, 〈fn, x〉 → 〈f, x〉 for all x ∈ E.

2 If fn → f strong, then fn ⇀ f weak in σ(E′, E′′). If fn ⇀ f weak in σ(E′, E′′), then

fn
∗
⇀ f in σ(E′, E)

3 if E is Banach and fn
∗
⇀ f weak in σ(E′, E), then (‖fn‖) is bounded and

‖f‖ ≤ lim inf ‖fn‖
4 If E is Banach and fn

∗
⇀ f , xn → x strong in E, then 〈fn, xn〉 → 〈f, x〉.

Exercise 6.30.

Prove Proposition 6.29.
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Remark 6.31.

When E is finite-dimensional the three topologies on E′ coincide, since Ê = E′′ and hence
dimE = dimE′′.
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Banach-Alaoglu-Bourbaki Theorem

Theorem 6.32 (Banach-Alaoglu-Bourbaki).

Let E be a normed vector space. Then the closed unity ball in E′, that is,

BE′ = {f ∈ E′; ‖f‖E′ ≤ 1},

is compact in the weak* topology σ(E′, E).
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Kakutani’s Theorem

Theorem 6.33 (Kakutani).

Let E be a Banach space. Then E is reflexive if and only if

BE = {x ∈ E; ‖x‖ ≤ 1}

is compact in the weak topology σ(E,E′).

Lemma 6.1 (Goldstine).

Let E be any Banach space. Then B̂E is dense in BE′′ with respect to the weak* topology

σ(E′′, E′), that is, B̂E
σ(E′′,E′)

= BE′′ .

Exercise 6.34.

See proof of Goldstine’s Lemma in [Brezis, Lemma 3.4].
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Hilbert Spaces

Definition 7.1.

Let E be a vector space. A scalar product on E is a bilinear form that is symmetric positive
definite, that is, a mapping (·, ·) : E × E → R that satisfies the following properties:

1 (u+ λv,w) = (u,w) + λ(v, w), ∀u, v ∈ E and λ ∈ R.

2 (u, v) = (v, u), ∀u, v ∈ E.

3 (u, u) > 0, for all u 6= 0.

Prof. Reginaldo (IMEUFF) Análise Funcional Escola de Verão de 2021 66 / 96



Example 7.2.

Examples of scalar product:

1 (x, y) =
∑n

i=1 xiyi, x, y ∈ Rn.

2 (x, y) =
∑∞

n=1 xnyn, x, y ∈ `2.

3 (f, g) =
∫ b
a f(x)g(x)dx, where f, g ∈ C0([a, b]).

Proposition 7.3 (Cauchy-Schwartz inequality).

Let E be a space with an scalar product and define ‖u‖ =
√
(u, u). Then

|(u, v)| ≤ ‖u‖‖v‖, para todos u, v ∈ E.
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Exercise 7.4.

Let E be a space with an scalar product. Prove that:

1 The mapping u ∈ E 7−→ ‖u‖ ∈ R is a norma on E. This norm is called norm induced by
the scalar product.

2 The Parallelogram Law holds

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2), ∀u, v ∈ E.

Definition 7.5.

A Hilbert space is a vector space endowed with a scalar product such that H is complete for
the norm induced by the scalar product.
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Exercise 7.6.

1 Show that if E is a vector space endowed with a scalar product, then the polar identity
holds

(u, v) =
1

4

(
‖u+ v‖2 − ‖u− v‖2

)
2 Show that if E is a normed vector space, than its norm is induced by a scalar product if,

and only if, it satisfies the parallelogram law.
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Orthogonality

Definition 7.7.

Let E be a space endowed with a scalar product. We say u, v ∈ E are orthogonal, and we
denote by u ⊥ v, if (u, v) = 0. If M is a subset of E, we denote by M⊥ the set of all vector
that are orthogonal to all elements of M , that is,

M⊥ = {u ∈ E; (u, v) = 0, ∀v ∈M}.
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Exercise 7.8.

Show that

1 If u ⊥ v, then ‖u+ v‖2 = ‖u‖2 + ‖v‖2.

2 If M is a closed subspace of E, then M⊥ is closed.

3 M ∩M⊥ = {0}

Proposition 7.9.

In a vector space endowed with a scalar product, u ⊥ v if, and only if,

‖u+ tv‖ ≥ ‖u‖, ∀t ∈ R.
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Definition 7.10.

A vector space E is said to be the direct sum of two subspaces E1,E2 written E = E1 ⊕E2, if
each u ∈ E has a unique representation

u = u1 + u2, u1 ∈ E1, u2 ∈ E2.

Exercise 7.11.

E = E1 ⊕ E2 if, and only if, E = E1 + E2 and E1 ∩ E2 = {0}.
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Orthogonal Projection

Theorem 7.12 (Orthogonal Projection).

Let E be any closed subspace of a Hilbert space H. Then

H = E ⊕ E⊥.

Lemma 7.13.

Let E be any closed subspace of a Hilbert space H. Then for every v ∈ H there exists a
unique u ∈ E such that

dist(v,E) := inf
w∈E
‖v − w‖ = ‖v − u‖.
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Definition 7.14.

Let E be any closed subspace of a Hilbert space H. The Orthogonal Projection is the operator
PE : H −→ E given by PEv = v1, where v = v1 + v2 is given by the direct sum H = E ⊕E⊥.

Remark 7.15.

It follows immediately from the former proof:

1 ‖v − PEv‖ = dist(v,E) = infw∈E ‖v − w‖.
2 PEu = u, for all u ∈ E, that is, (PE)|E = Id.

3 v − PEv ∈ E⊥, for all v ∈ H.

Corollary 7.16.

Let E be any closed subspace of a Hilbert space H. Then E = (E⊥)⊥.
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Exercise 7.17.

Verify the following properties of orthogonal projection:

1 PE ∈ L(H,E) with ‖PE‖ = 1.

2 PE is surjective .

3 P 2
E = PE (idempotent) and (PE)|E = Id.

4 E⊥ = ker(PE) and PE⊥ = Id − PE .

5 PE · PE⊥ = PE⊥ · PE = 0.

Prof. Reginaldo (IMEUFF) Análise Funcional Escola de Verão de 2021 75 / 96



Riez Representation Theorem

Theorem 7.18 (Riez-Fréchet Representation Theorem).

Let H be a Hilbert space. For every ϕ ∈ H ′ there exists a unique u ∈ H such that

〈ϕ, v〉 = (u, v), ∀v ∈ H.

Moreover, ‖u‖ = ‖ϕ‖H′ .
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Corollary 7.19.

Let H be a Hilbert space. Then, the natural map γ : H −→ H ′, defined by γ(u) = (u, ·)H , is
a surjective linear isometry. In particular, for any ϕ ∈ H ′ and v ∈ H we have that

(γ−1(ϕ), v) = 〈ϕ, v〉

Corollary 7.20.

Every Hilbert space is reflexive.
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Bilinear Form

Definition 7.21.

Let H be a Hilbert space. A bilinear form b : H ×H → R is said to be

1 continuous if there is a constant C > 0 such that

|b(u, v)| ≤ C‖u‖‖v‖, ∀u, v ∈ H.

2 coercive if there is a constant α > 0 such that

b(u, u) ≥ α‖u‖2, ∀u ∈ H.
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Proposition 7.22.

Let H be a Hilbert space and assume b : H ×H → R is a continuous bilinear form. Then,
there exists a unique operator Tb ∈ L(H) such that

b(u, v) = (Tbu, v), ∀v ∈ H.

Theorem 7.23 (Lax-Milgram).

Let H be a Hilbert space and assume b : H ×H → R is a continuous coercive bilinear form.
Then, given any ϕ ∈ H ′ there exists a unique u ∈ H such that

〈ϕ, v〉 = b(u, v), ∀v ∈ H.
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Hilbet sums

Definition 7.24.

Let (En)n∈N be a sequence of closed subspaces of H. One says that H is the Hilbert sum of
the E′ns and one writes H = ⊕nEn if

1 the spaces En are mutually orthogonal, i.e.,

(u, v) = 0, ∀u ∈ En, ∀v ∈ Em, m 6= n.

2 the linear space spanned by ∪∞n=1En is dense in H.

Prof. Reginaldo (IMEUFF) Análise Funcional Escola de Verão de 2021 80 / 96



Theorem 7.25.

Assume H = ⊕nEn. Given u ∈ H, set

un = PEnu and Sn =

n∑
k=1

uk.

Then, we have limn→+∞ Sn = u and

+∞∑
k=1

|uk|2 = |u|2 (Bessel-Parseval’s identity)
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Lemma 7.26.

Assume that (vn) is any sequence in H such that

(vn, vm) = 0, ∀m 6= n and
∞∑
k=1

‖vk‖2 < +∞.

Set Sn =
∑n

k=1 vk, then

lim
n→∞

Sn = S ∈ H and ‖S‖2 =

∞∑
k=1

‖vk‖2.
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Orthonormal Basis

Definition 7.27.

A sequence (en)n∈N in a Hilbert space H is said to be an orthonormal basis or a Hilbert basis
of H if it satisfies the following properties:

1 |en| = 1 for all n ∈ N and (en, em) = 0, ∀m 6= n,

2 the linear space spanned by the en’s is dense in H.

Not to be confused with an Hamel basis, which is a family in H such that every element in H
can be uniquely written as a finite linear combination of the basis’s element.
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Corollary 7.28.

Let (en) be an orthonormal basis. Then for every u ∈ H, we have

u =
∞∑
k=1

(u, ek)ek and ‖u‖2 =
∞∑
k=1

|(u, ek)|2.

Conversely, given any sequence (αn) ∈ `2, the series
∑∞

k=1 αkek converges to some element
u ∈ H such that (u, ek) = αk for all k ∈ N and ‖u‖2 =

∑∞
k=1 α

2
k.
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Definition 7.29.

We say that a metric space E is separable if there exists a subset D ⊂ E that is countable and
dense.

Exercise 7.30.

Let E be a separable metric space and let F ⊂ E be any subset. Then F is also separable.

Theorem 7.31.

Every separable Hilbert space has an orthonormal basis.

Exercise 7.32.

See the proof on [Brezis, Theorem 5.11].

Prof. Reginaldo (IMEUFF) Análise Funcional Escola de Verão de 2021 85 / 96



Preliminaries: Compact Metric Spaces

Definition 8.1.

A metric space M is said to be compact if every open covering of M contains a finite
subcollection that also covers M .

Definition 8.2.

A subset X of a metric space M is said to be relatively compact ou precompact, if its closure
X is compact. X is said to be totally bounded if for every ε > 0, we can write

X =
n⋃
n=1

B(xi, ε), where B(xi, ε) are open balls in M .

Exercise 8.3.

Let X be a subset of a metric space M . If X is totally bounded, show that, for every ε > 0,
X is contained in a finite union of open balls of radius ε > 0 with center in points of X.
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Proposition 8.4.

If M is a metric space, then the following sentences are equivalents:

1 M is compact.

2 Every infinite subset of M has an accumulation point.

3 Every sequence in M has a convergent subsequence.

4 M is complete and totally bounded.

Exercise 8.5.

1 Every totally bounded set in a complete metric space is relatively compact.

2 Let M an N be metric spaces. If X ⊂M is compact and F :M → N is continuous,
then F (X) is compact.
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Adjoint Operator

Definition 8.6.

Let E,F be normed vector spaces and let A ∈ L(E,F ). The adjoint operator of A is the
operator A∗ : F ′ −→ E′ defined by

〈A∗ϕ, v〉 = 〈ϕ,Av〉, ∀ϕ ∈ F ′ and v ∈ E.

Proposition 8.7.

The adjoint operator is well defined and ‖A∗‖ = ‖A‖.

Remark 8.8.

It is possible to define an adjoint operator for unbounded linear operators, since its domains is
densely defined. See [Brezis, Section 2.6].
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Compact Operators

Definition 8.9.

Let E,F be normed vector space. We say that a linear operator T : E −→ F is compact if T
maps bounded sets in E into relatively compact sets in F . We denote by K(E,F ) the set of
all compact operators in L(E,F ). For simplicity one writes K(E) = K(E,E).

Exercise 8.10.

1 T : E → F is compact iff for every bounded sequence (xn) in E, (Txn) has a convergent
subsequence.

2 T : E → F is compact iff for every sequence (xn) ⊂ BE , (Txn) has a convergent
subsequence.

3 K(E,F ) is a vector subspace of L(E,F ).
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Proposition 8.11.

Let F be a Banach space. Then K(E,F ) is a closed subspace of L(E,F ). In particular,
K(E,F ) is Banach.

Definition 8.12.

Let E,F be normed vector space, a linear operator T : E −→ F is said to be finite rank if its
image R(T ) is a finite-dimensional subspace of F . Clearly, any finite rank bounded linear
operators are compact operators.

Corollary 8.13.

Let F be a Banach space. If (Tn) is a sequence of finite-rank bounded linear operator such
that Tn → T em L(E,F ), then T is a compact operator.

Prof. Reginaldo (IMEUFF) Análise Funcional Escola de Verão de 2021 90 / 96



Proposition 8.14.

Let E,F and G three normed vector spaces. Let T ∈ L(E,F ) and S ∈ L(F,G). If T or S is
compact, then S ◦ T is compact.

Theorem 8.15 (Schauder).

Let E,F be normed vector spaces. T : E → F is compact iff T ∗ : F ′ −→ E′ is compact.
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Fredholm alternative for Compact Operators

Theorem 8.16 (Fredholm Alternative).

Let E be a Banach Space and T ∈ K(E). Then

1 ker(I − T ) is finite dimensional.

2 R(I − T ) is closed, and more precisely R(I − T ) = ker(I − T ∗)⊥.

3 R(I − T ) = E iff ker(I − T ) = {0}.
4 dimker(I − T ) = dimker(I − T ∗)

Exercise 8.17.

See proof of Fredholm Alternative in [Brezis, Theorem 6.6]
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The spectrum of a Compact Operator

Definition 8.18.

Let E be a normed vector space and T ∈ L(E). The resolvent set, denoted by ρ(T ), is
defined by

ρ(T ) = {λ ∈ R; (T − λI) is bijective from E onto E}.

The spectrum, denoted by σ(T ), is the complement of the resolvent set, i.e.,
σ(T ) = R \ ρ(T ). A real number λ is said to be an eigenvalue of T if ker(T − λI) 6= {0} and
ker(T − λI) is the correspondent eigenspace. The set of all eigenvalues is denoted by EV (T ).

Remark 8.19.

If E is a Banach space and λ ∈ ρ(T ) then, from Corollary 5.2 (T − λI)−1 ∈ L(E).
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Proposition 8.20.

Let E be a Banach space and T ∈ L(E). Then the spectrum σ(T ) is compact and
σ(T ) ⊂ [−‖T‖, ‖T‖].

Theorem 8.21.

Let E be a Banach space and T ∈ K(E). Then one has:

1 If dimE = +∞, then 0 ∈ σ(T ).
2 σ(T ) \ {0} = EV (T ) \ {0}.
3 0 is the only possible point of accumulation of EV (T ).

4 EV (T ) is countable.
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Self-Adjoint Operators

If H is a Hilbert space and T ∈ L(H), we can identify H ′ and H and see T ∗ as a bounded
operator from H into itself.

Definition 8.22.

Let H be an Hilbert Space. A operator T ∈ L(H) is said to be self-adjoint if T ∗ = T , i.e.,

(Tu, v) = (u, Tv), ∀u, v ∈ H.

Proposition 8.23.

Let T ∈ L(H) be a self-adjoint operator. Set

m = inf
u∈H

‖u‖=1

(Tu, u) and M = sup
u∈H

‖u‖=1

(Tu, u).

Then σ(T ) ⊂ [m,M ], m ∈ σ(T ) and M ∈ σ(T ). Moreover, ‖T‖ = max{|m|, |M |}.
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Spectral Theorem for Compact Self-adjoint Operators

Corollary 8.24.

If T is a self-adjoint operator such that σ(T ) = {0}, then T = 0.

Theorem 8.25 (Spectral Theorem for Compact Self-adjoint Operators).

Let H be a separable Hilbert space. If T is a compact self-adjoint operator, then there exists a
Hilbert basis composed of eigenvalues of T .

Prof. Reginaldo (IMEUFF) Análise Funcional Escola de Verão de 2021 96 / 96


	Normed Space
	Metric Spaces
	Normed Spaces
	The spaces ℓᵖ
	Spaces of bounded sequences

	Bounded linear operators
	Topological dual E'
	Topological Isomorphism
	Equivalent norms
	Finite dimenstional normed spaces
	Riez's Lemma

	Hahn-Banach Theorem
	Hahn-Banach Theorem for normed spaces
	Proof of Hah-Banach Theorem
	Canonical embedding from E into E''
	Espaços Reflexivos
	1º Geometric form of the Hahn-Banach Theorem
	Minkowski Functional
	2º Geometric form of the Hahn-Banach theorem

	Baire and Banach-Steinhauss Theorems
	Teorema de Banach-Steinhaus

	Open Mapping and Closed Graph Theorems
	Open Mapping Theorem
	Closed Graph Theorem

	Weak Topologies
	Basic Topological Concepts
	Initial Topology
	Weak Topology σ(E,E')
	Weak convergence
	Weak* topology σ(E',E)
	Weak* convergence
	Banach-Alaoglu-Bourbaki Theorem
	Kakutani's Theorem

	Hilbert Spaces
	Inner Product
	Cauchy-Schwartz inequality
	Hilbert Space
	Orthogonality
	Orthogonal Projection
	Riez Representation Theorem
	Bilinear forms
	Lax-Milgram Theorem
	Hilbert sums
	Orthonormal Bases

	Spectral Theorem
	Compact Metric Spaces
	Operador Adjunto
	Compact Operators
	Fredholm Alternative
	The spectrum of a Compact Operator
	Self-Adjoint Operators
	Spectral Theorem for Compact Self-adjoint Operators


